

Institut für Fachdidaktik der Naturwissenschaften

milq – Quantum Physics in Secondary School

Rainer Müller¹, Oxana Mishina^{1,2}

¹TU Braunschweig, ²Università di Trieste

The aims of the milq project

(milq = **M**unich Internet Project to Learn **Q**uantum Physics) established c. 1999

Principle aim:

Convey the **modern world view** of quantum physics to secondary school students

Conceptual approach to quantum physics

Qualitative reasoning based on reasoning tools (basic rules of quantum physics)

Use of interactive simulation programs (double slit, Mach-Zehnder interferometer)

Website

Available in English since last year: http://milq.tu-bs.de/en

IILO - TEACHING QUANTUM PHYSICS TO MORE T

MATERIA

LANGUAGE: ₩ ▼

Lesson 7: Heisenberg's uncertainty relation

7.1 Simultaneous preparation of different properties – 7.2 Preparation of position and momentum for photons – 7.3 A measure for the "quality" of a preparation
 7.4 Measurement method and properties – 7.5 Electrons at the single slit and quantitative expression of the uncertainty relation

7.6 Uncertainty relation and path concept - 7.7 Progress check - 7.8 Summary

The Heisenberg uncertainty relation is often seen as one of the most important insights of quantum mechanics. This chapter shows how it can be expressed as a statement about the ability to simultaneously prepare properties.

You can download the slightly more detailed Chapter 7 of the teaching materials as a pdf file to help you.

7.1 Simultaneous preparation of different properties

In preparation for understanding the Heisenberg uncertainty relation, we will again discuss the preparation of properties concept (preparation).

Outline of the milq course

milq: a spiral approach

Part 1: photons

- 1. Photoelectric effect
- 2. State preparation

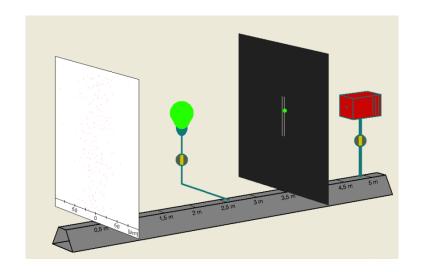
Mach-Zehnder interferometer

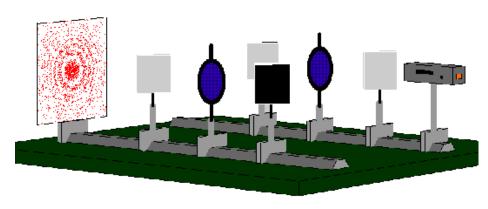
- 3. Wave- and particlebehavior
- 4. Non-localised photons
- 5. Probabilistic interpretation

Part 2: electrons

6. Electron diffraction

Double-slit experiment


- 7. ψ and its meaning
- 8. Non-localised electrons
- 9. Measurement process
- 10. Schrödinger's cat & decoherence
- 11. Uncertainty relation



Simulation programs

Double-slit experiment

Mach-Zehnder interferometer

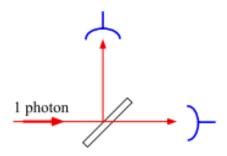
In quantum physics: Proper language is crucial

Reasoning tools:

A set of four qualitative rules: The basic traits of quantum physics

"Qualitative mini-axiomatic" provides students with a verbal tool they can use in discussions and argumentations.

Enable students for qualitative discussions, predict quantum effects, help to avoid learning difficulties.

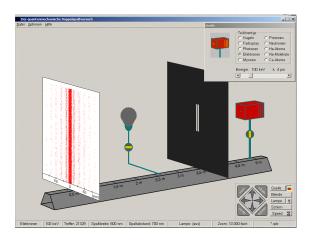


Rule 1: Statistical behavior:

A result of a single event cannot be predicted, it is random!

Only statistical predictions (for many repetitions) are possible in quantum physics.

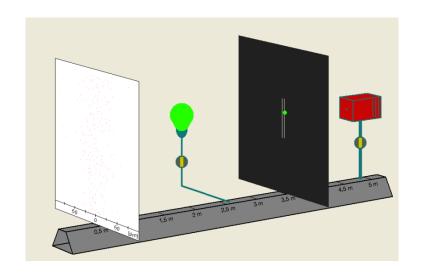
Example: Anticoincidence of single photons at a beam splitter


Rule 2: Single quantum objects can contribute to an interference pattern.

Interference occurs if there is **more than one classical alternative** leading to the same experiment result.

Superposition states: None of these alternative will be "realized" in a classical sense.

Example: Two paths in an interferometer; two-slit interference

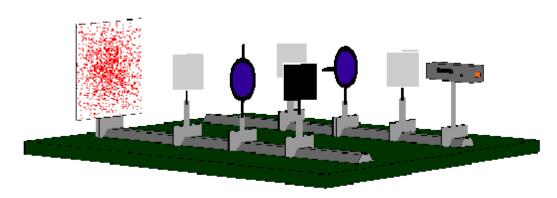

Rule 3: Unique measurement results

Even if a quantum object in a superposition state need not have a fixed value of the measured quantity, you always find a unique measurement result.

This is the measurement postulate of quantum mechanics

Example:

- Stern-Gerlach experiment,
- Feynman's light bulb


Rule 4: Complementarity

Which-way information and interference pattern are mutually exclusive.

Quantum objects can not be prepared in a defined position with a defined momentum at the same time.

Examples:

- Heisenberg's uncertainty relation
- Quantum Eraser experiments

Future developments

In view of EU's prospected need for Quantum Technology workforce:

- The conceptual approach of milq is well-suited for creating "quantum awareness"
- Qualitative reasoning tools can form a basis for intuitive understanding
- → promising starting point for the education and training of "Quantum Engineers"

Future developments

In view of EU's prospected need for Quantum Technology workforce:

- The conceptual approach of milq is well-suited for creating ",quantum awareness"
- Qualitative reasoning tools can form a basis for intuitive understanding
- → promising starting point for the education and training of "Quantum Engineers"

visit us on: http://milq.tu-bs.de/en/

